A Nonlinear Optimal Guidance Law with Terminal Impact Angle Constraint
نویسندگان
چکیده
منابع مشابه
Lyapunov-Based Pursuit Guidance Law with Impact Angle Constraint
This paper presents Lyapunov-based pursuit guidance law against stationary targets. To design a nonlinear guidance law, Lyapunov candidate function is introduced to reduce the angle between the velocity vector of a missile and the distance vector between the missile and the target. Therefore, the proposed guidance laws have the characteristic of pursuit guidance. To attack a target from a prede...
متن کاملA Three Stage Terminal Fuzzy Guidance Law for Reentry Vehicles
An advanced guidance law is developed for reentry phase of a reentry vehicle. It can achieve small miss distance and desired impact attitude angle, simultanceously. To meet this requirment a guidance law based on the fuzzy logic approach is developed. It is partitioned into three stages. This guidance law does not require linearization of missile engagement model. Line-of-sight and flight path ...
متن کاملNonlinear Model Predictive Spread Acceleration Guidance with Impact Angle Constraint for Stationary Targets
A new technique named as model predictive spread acceleration guidance (MPSAG) is proposed in this paper. It combines nonlinear model predictive control and spread acceleration guidance philosophies. This technique is then used to design a nonlinear suboptimal guidance law for a constant speed missile against stationary target with impact angle constraint. MPSAG technique can be applied to a cl...
متن کاملFuzzy Logic-based Terminal Guidance with Impact Angle Control
This paper presents a new formulation of terminal guidance law which controls the impact attitude angle while minimising the miss distance. The formulation is based on the fuzzy logiccontrol approach. Unlike many prevalent designs, the proposed guidance law does not require linearisation of missile-target engagement model. Numerical simulation results demonstrate that the proposed guidance law ...
متن کاملOptimal Design of Geometrically Nonlinear Structures Under a Stability Constraint
This paper suggests an optimization-based methodology for the design of minimum weight structures with kinematic nonlinear behavior. Attention is focused on three-dimensional reticulated structures idealized with beam elements under proportional static loadings. The algorithm used for optimization is based on a classical optimality criterion approach using an active-set strategy for extreme lim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computational Intelligence Systems
سال: 2011
ISSN: 1875-6891,1875-6883
DOI: 10.1080/18756891.2011.9727881